Dear Aspirants,

We are providing the most important **Quadratic Equations (Inequalities) for SBI PO 2019, SBI Clerk 2019** and all **other competitive bank and insurance exams**. These questions have very high chances to be asked in **SBI PO 2019, SBI Clerk 2019. **Get the

**Best Test Series for SBI PO 2019**at the most affordable price (Based on Real Exam Pattern) –

**Click Here**

Download the

**Best GK Gaming App for Current Affairs and GK (Bank+SSC)**– Click here

**(App No 1) (App No 2)**

Directions:1-10) **In the following questions, two equations I and II are given. You have to solve both the equations and g****ive Answer as,**

1.

I. 3x^{2} +14x +15 =0

II. 3y^{2} -13y +14 =0

2.

I. X^{3} =1331

II. 2y^{2} -21y +55 =0

3.

I. 5x = 7y+21

II. 11x +4y+109 =0

4.

I. 2x^{2} -11x +12 =0

II. 2y^{2} -17y +36 =0

5.

I. 6x^{2} – 32x + 42 = 0

II. y^{2 }+ 7y + 12 = 0

6.

I. 5x^{2}-13x-6=0

II. 6y^{2}+29y+35=0

7.

I. 12x-14y+38=0

II. 4x+7y-209=0

8.

I. x^{2}+28y+195=0

II. y^{2}-4y-221=0

9.

I. 20x^{2}+27x+9=0

II. 2y^{2}-39y+54=0

10.

I. 7x+8y=42

II. 3x+5y=18

**Check your Answers below:**

Directions:1-5)

**In the following questions, two equations I and II are given. You have to solve both the equations and g****ive Answer as,**##### 1. Question

I. 3x

^{2}+14x +15 =0II. 3y

^{2}-13y +14 =0Ans:3

I. 3x^{2}+14x +15 =03x^{2}+9x +5x+15 =03x(x+3)+5(x+3) =0

(3x+5) (x+3) =0

X= -5/3, -3

II. 3y

^{2}-13y +14 =03y

^{2}-6y-7y +14 =03y(y-2)-7 (y-2) =0

(3y-7)(y-2) =0

Y= 7/3, 2

x<y

##### 2. Question

I. X

^{3}=1331II. 2y

^{2}-21y +55 =0Ans:1

I. X^{3}=1331X = ∛1331 =11II. 2y

^{2}-21y +55 =02y

^{2}-10y-11y+55 =02y(y-5)-11 (y-5) =0

(2y-11) (y-5) =0

Y= 11/2, 5

x>y

##### 3. Question

I. 5x = 7y+21

II. 11x +4y+109 =0

Ans:1

I. 5x – 7y = 21 —> (1)II. 11x +4y = -109 –> (2)By solving the equation (1), (2), we get,

X= -7, y=-8

x>y

##### 4. Question

I. 2x

^{2}-11x +12 =0II. 2y

^{2}-17y +36 =0Ans:4

I. 2x^{2}-11x +12 =02x^{2}-8x-3x +12 =02x(x-4)-3 (x-4) =0

(2x-3) (x-4) =0

X= 3/2, 4

II. 2y

^{2}-17y +36 =02y

^{2}-9y-8y +36 =0Y(2y-9)-4(2y-9) =0

(y-4) (2y-9) =0

Y =4, 9/2

X<=y

##### 5. Question

I. 6x

^{2}– 32x + 42 = 0II. y

^{2 }+ 7y + 12 = 0Ans:1

I. 6x^{2}– 32x + 42 = 06x^{2}– 18x – 14x + 42 = 06x(x-3)-14 (x-3) =0

(6x – 14)(x – 3) = 0

x = 3, 7/3

II. y

^{2 }+ 7y + 12 = 0y

^{2 }+ 3y+4y + 12 = 0Y(y+3) +4 (y+3) =0

(y + 4)(y + 3) = 0

y = -4, -3

x > y

##### 6. Question

I. 5x

^{2}-13x-6=0II. 6y

^{2}+29y+35=0Ans:1

I. 5x^{2}-13x-6=05x^{2}-15x+2x-6=0(5x+2)(x-3)=0

x=-2/5 or 3

II. 6y

^{2}+29y+35=06y

^{2}+15y+14y+35=0y=-5/2 or -7/3

Hence

**x>y**##### 7. Question

I. 12x-14y+38=0

II. 4x+7y-209=0

Ans:5

12x -14y+38=0 ……….. (1)4x+7y-209=0 ……………… (2)Multiplying (2) by 2 and adding to (1), we have

x= 19 and y= 19

Thus

**x= y**##### 8. Question

I. x

^{2}+28y+195=0II. y

^{2}-4y-221=0Ans:3

I. x^{2}+28y+195=0(x+13)(x+15)=0x=-13 or -15

II. y

^{2}-4y-221=0(y-17)(y+13)=0

y=-13 or 17

Hence

**x≤y**##### 9. Question

I. 20x

^{2}+27x+9=0II. 2y

^{2}-39y+54=0Ans:2

I. 20x^{2}+27x+9=020x^{2}+15x+12x +9=0x=-3/5 or -3/4

II. 2y

^{2}-39y+54=02y

^{2}-36y-3y+54=0(2y-3)(y-18)=0

y= 1.5 and 18

Hence

**x<y**##### 10. Question

I. 7x+8y=42

II. 3x+5y=18

Ans:1

7x+8y=42 ………….. (1)3x+5y=18 ………….. (2)Multiplying (1) by 3 and (2) by 7, and after solving them we have

x= 6 and y=0

Thus

**x>y**