Dear Aspirants,

We are providing the most important **Quadratic Equations (Inequalities) for SBI PO 2019, SBI Clerk 2019** and all **other competitive bank and insurance exams**. These questions have very high chances to be asked in **SBI PO 2019, SBI Clerk 2019. **Get the

**Best Test Series for SBI PO 2019**at the most affordable price (Based on Real Exam Pattern) –

**Click Here**

Download the

**Best GK Gaming App for Current Affairs and GK (Bank+SSC)**– Click here

**(App No 1) (App No 2)**

Directions:1-10) **In the following questions, two equations I and II are given. You have to solve both the equations and g****ive Answer as,**

1.

- 4p² + 8p + 3 = 0
- 4q² – 29q + 45 = 0

2.

- 2p² – 23p + 21 = 0
- q² + 42q + 272 = 0

3.

- 5p² – 26p + 21 = 0
- 2q² – 17q + 21 = 0

4.

- p² – 21p + 104 = 0
- q² – 33q + 260 = 0

5.

- p² – 31p + 240 = 0
- q² – 28q + 195 = 0

6.

I.3p^{2} + 13p + 14 = 0

II.3q^{2} + 11q + 10 = 0

7.

I.49p^{2} – 84p + 36 = 0

II.25q^{2} – 30q + 9 = 0

8.

I.3p + 4q = 49

II.5p + 8q = 91

9.

I.p + (1 / p) = 17 / 4

II.4q^{2} + 4 + 17q = 0

10.

I.p^{2} – 9p + 18 = 0

II.2q^{2} – 5q = 3

**Check your Answers below:**

Directions:1-10)

**In the following questions, two equations I and II are given. You have to solve both the equations and g****ive Answer as,**##### 1. Question

- 4p² + 8p + 3 = 0
- 4q² – 29q + 45 = 0

Ans:2

4p² + 8p + 3 = 04p

^{2}+2p+6p+3 =02p (2p+1)+ 3(2p+1) =0

(2p+3) (2p+1)= 0

p = -0.5, -1.5

4q² – 29q + 45 = 04q

^{2}-20q-9q+45 =04q(q-5) -9 (q-5) =0

(4q-9) (q-5) =0

q = 2.25, 5P < q

##### 2. Question

- 2p² – 23p + 21 = 0
- q² + 42q + 272 = 0

Ans:1

2p² – 23p + 21 = 02p

^{2}-21p-2p +21 =02p (p-1) -21 (p-1) =0

(2p-21)(p-1) =0

p = 10.5, 1

q² + 42q + 272 = 0q

^{2}+8q+34q+272 =0q(q+8)+34 (q+8) =0

(q+8)(q+34)=0

q = -8, -34P > q

##### 3. Question

- 5p² – 26p + 21 = 0
- 2q² – 17q + 21 = 0

Ans:5

5p² – 26p + 21 = 05p

^{2}-5p-21p+21=0(5p-21) (p-1) =0

p = 4.2, 0.2

2q² – 17q + 21 = 02q

^{2}-14q-3q+21 =02q (q-7) -3(q-21) =0

(2q-3) (q-7) =0

q = 7, 1.5

Relationship cannot be determined

##### 4. Question

- p² – 21p + 104 = 0
- q² – 33q + 260 = 0

Ans:4

p² – 21p + 104 = 0P

^{2}-13p-8p+104 =0(p-8) (p-13) =0

p = 13, 8

q² – 33q + 260 = 0q

^{2}– 13q- 20q + 260 =0(q-13) (q-20) =0

q = 13, 20P ≤ q

- p² – 31p + 240 = 0
- q² – 28q + 195 = 0
##### 5. Question

Ans:3

p² – 31p + 240 = 0p

^{2}– 15p- 16p + 240 =0(p-15) (p-16) =0

p = 15, 16

q² – 28q + 195 = 0q

^{2}– 13q – 15q +195 =0(q-13) (q-15) =0

q = 13, 15P ≥ q

##### 6. Question

I.3p

^{2}+ 13p + 14 = 0II.3q

^{2}+ 11q + 10 = 0Ans:5

I.3p^{2}+ 13p + 14 = 0Or, (3p + 7)(p + 2) = 0

p = -2 or –(7 / 3)

II.3q

^{2}+ 11q + 10 = 0Or, (q + 2)(3q + 5) = 0

∴ q = -2 or – (5 / 3)

**Hence p ≤ q**##### 7. Question

I.49p

^{2}– 84p + 36 = 0II.25q

^{2}– 30q + 9 = 0Ans:2

I.49p^{2}– 84p + 36 = 0Or, 49p

^{2}– 42p – 42p + 36 = 0Or, (7p – 6)(7p – 6) = 0

p = 6 / 7

II.25q

^{2}– 30q + 9 = 0Or, (5q – 3)

^{2}= 0∴ q = 3 / 5

**Hence p > q**##### 8. Question

I.3p + 4q = 49

II.5p + 8q = 91

Ans:3

Here, p = q = 7##### 9. Question

I.p + (1 / p) = 17 / 4

II.4q

^{2}+ 4 + 17q = 0Ans:2

I.p + (1 / p) = 17 / 4 = 4(1 / 4)p = 4 or 1 / 4

II.4q

^{2}+ 4 + 17q = 0Or, 4q

^{2 }+ 16q + q + 4 = 0Or, (q + 4)(4q + 1) = 0

q = -4, or – (1 / 4)

^{ }**Hence p > q**##### 10. Question

I.p

^{2}– 9p + 18 = 0II.2q

^{2}– 5q = 3Ans:4

I.p^{2}– 9p + 18 = 0Or, (p – 6)(p – 3) = 0

p = 6 or 3

II.2q

^{2}– 5q – 3 = 0Or, (q – 3)(2q + 1) = 0

∴ q = – (1 / 2) or 3