Set-15 Quadratic Equations (Inequalities) For SBI PO and SBI Clerk 2019 | Must Go Through These Questions

Dear Aspirants,
We are providing the most important Quadratic Equations (Inequalities) for SBI PO 2019, SBI Clerk 2019 and all other competitive bank and insurance exams. These questions have very high chances to be asked in SBI PO 2019, SBI Clerk 2019.
Get the Best Test Series for SBI PO 2019 at the most affordable price (Based on Real Exam Pattern) – Click Here
Download the Best GK Gaming App for Current Affairs and GK (Bank+SSC)– Click here (App No 1)  (App No 2)

Directions:1-5) In each of the following questions, two equations (i) and (ii) are given. You have to solve them and find the correct option.

1.

i) 2x2-23x+56=0

ii) 3y2+13y+4=0

2.

i) x2-22x+117=0

ii) 5y2+41y+42=0

3.

i) 2x2-7x+5=0

ii) 2y2+y-28=0

4.

i) x4-[(9)9/2/√x]=0

ii) (4/√y)+ (5/√y)= √y

5.

i) x2+5x+4=0

ii) 3y2-13y+12=0

Directions:6-10) In the following questions, two equations numbered are given in variables p and q. You have to solve both the equations and find out the relationship between p and q. Then give answer accordingly.

6.

I. 3p2 – 17p + 10 = 0
II. 3q2 + 4q – 4 = 0

7.

I. 3p2 – 14p + 8 = 0
II. 3q2 – 20q + 12 = 0

8.

I. 3p2 – 19p + 28 = 0
II. 4q2 – 5q – 6 = 0

9.

I. 6p2 + 23p + 21 = 0
II. 3q2 – 14q – 5 = 0

10.

I. 2p2 – 7p + 3 = 0
II. 2q2 + 11q + 12 = 0

 

Check your Answers below:

 

 

  • Directions:1-5) In each of the following questions, two equations (i) and (ii) are given. You have to solve them and find the correct option.

    1. Question

    i) 2x2-23x+56=0

    ii) 3y2+13y+4=0

    Ans:1
    i) 2x2-23x+56=0

    2x2-16x-7x+56=0

    (2x-7)(x-8)=0

    x= 7/2 or 8

    ii) 3y2+13y+4=0

    3y2+12y+y+4=0

    (3y+1)(y+4)=0

    y= -1/3 or -4

    Hence x >y

  • 2. Question

    i) x2-22x+117=0

    ii) 5y2+41y+42=0

    Ans:1
    i) x2-22x+117=0

    x2-13x-9x+117=0

    (x-13)(x-9)=0

    x=13 or 9

    ii) 5y2+41y+42=0

    5y2+35y+6y+42=0

    (y+7)(5y+6)=0

    y=-7 or -6/5

    Hence x >y

  • 3. Question

    i) 2x2-7x+5=0

    ii) 2y2+y-28=0

    Ans:5
    i) 2x2-7x+5=0

    2x2-2x-5x+5=0

    (x-1)(2x-5)=0

    x=1 or 5/2

    ii) 2y2+y-28=0

    2y2+8y-7y-28=0

    (2y-7)(y+4)=0

    y= -4 or 7/2

    Hence the relationship cannot be determined

  • 4. Question

    i) x4-[(9)9/2/√x]=0

    ii) (4/√y)+ (5/√y)= √y

    Ans:5
    i) x4-[(9)9/2/√x]=0

    x9/2-99/2=0

    x9/2=99/2

    x=9

    ii) (4/√y)+ (5/√y)= √y

    9/√y=√y

    y=9

    Hence, x= y

  • 5. Question

    i) x2+5x+4=0

    ii) 3y2-13y+12=0

    Ans:1
    i) x2+5x+4=0

    x2+4x+x+4=0

    (x+1)(x+4)=0

    x= -1 or -4

    ii) 3y2-13y+12=0

    3y2-9y-4y+12=0

    (y-3)(3y-4)=0

    y=4/3 or 3

    Hence x< y

    Directions:6-10) In the following questions, two equations numbered are given in variables p and q. You have to solve both the equations and find out the relationship between p and q. Then give answer accordingly.

    6. Question

    I. 3p2 – 17p + 10 = 0
    II. 3q2 + 4q – 4 = 0

     Ans:3
    3p2 – 17p + 10 = 0

    3p2 – 15p – 2p + 10 = 0

    Gives p = 2/3, 5

    3q2 + 4q – 4 = 0

    3q2 + 6q – 2q – 4 = 0

    Gives q = -2, 2/3

    -2…. 2/3…… 5

    p ≥ q

  • 7. Question

    I. 3p2 – 14p + 8 = 0
    II. 3q2 – 20q + 12 = 0

    Ans:5
    3p2 – 14p +8 = 0

    3p2 – 12p – 2p + 8 = 0

    Gives p = 2/3, 4

    3q2 – 20q + 12 = 0

    3q2 – 18q – 2q + 12 = 0

    Gives q = 6, 2/3

    2/3….. 4….. 6

    Relation cannot be determined

  • 8. Question

    I. 3p2 – 19p + 28 = 0
    II. 4q2 – 5q – 6 = 0

    Ans:1
    3p2 – 19p + 28 = 0

    3p2 – 12p – 7p + 28 = 0

    Gives p = 7/3, 4

    4q2 – 5q – 6 = 0

    4q2 – 8q + 3q – 6 = 0

    Gives q = -3/4, 2

    -3/4…… 2…… 7/3…. 4

    p > q

  • 9. Question

    I. 6p2 + 23p + 21 = 0
    II. 3q2 – 14q – 5 = 0

    Ans:2
    6p2 + 23p + 21 = 0

    6p2 + 9p + 14p + 21 = 0

    Gives p = -7/3, -3/2

    3q2 – 14q – 5 = 0

    3q2 – 15q + q – 5 = 0

    Gives q = -1/3, 5

    -7/3…… -3/2….. -1/3…… 5

    p < q

  • 10. Question

    I. 2p2 – 7p + 3 = 0
    II. 2q2 + 11q + 12 = 0

    Ans:1
    2p2 – 7p + 3 = 0

    2p2 – 6p – p + 3 = 0

    Gives p = 3, 1/2

    2q2 + 11q + 12 = 0

    2q2 + 8q + 3q + 12 = 0

    Gives q = -3/2, -4

    -4……. -3/2…… 1/2….. 3

    p > q